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Abstract The Polo-like kinases (Plks) are a conserved sub-
family of serine-threonine protein kinases that have significant
roles in cell proliferation. The serine/threonine protein kinases
or polo-like kinase 1 (PLK1) exist in centrosome during
interphase and is an important regulatory enzyme in cell cycle
progression during M phase. Mutations in mammalian PLK1
were found to be over expressed in various human cancers and
it is disrupting the binding ability of polo box domain with
target peptide. In this analysis we implemented a computa-
tional approach to filter the most deleterious and cancer asso-
ciated mutation on PLK1 protein. We found W414F as the
most deleterious and cancer associated by Polyphen 2.0, SIFT,
I-mutant 3.0, PANTHER, PhD-SNP, SNP&GO, Mutpred and
Dr Cancer tools. Molecular docking and molecular dynamics
simulation (MDS) approach was used to investigate the struc-
tural and functional behavior of PLK1 protein upon mutation.
MDS and docking results showed stability loss in mutant
PLK1 protein. Due to mutation, PLK1 protein became more
flexible and alters the dynamic property of protein which
might affect the interaction with target peptide and leads to
cell proliferation. Our study provided a well designed compu-
tational methodology to examine the cancer associated
nsSNPs and their molecular mechanism. It further helps sci-
entists to develop a drug therapy against PLK1 cancer-
associated diseases.
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Introduction

The polo-like kinases (Plks) are a conserved subfamily of
serine-threonine protein kinases that have significant roles in
cell proliferation [1, 2]. In mammals, the multiple forms of
plks are designated as PLK1, PLK-2/Snk, PLK-2/Prk/Fnk,
and PLK/Sak. Among the Plks, PLK1 has been studied most
extensively because of its ability to override cellular check-
points and induce genetic instability, which leads to oncogenic
transformation of human cells [3, 4]. PLK1 protein is com-
posed of a common N-terminal catalytic domain and C-
terminal regulatory domain with highly conserved sequences
named polo boxes (PB). The polo box domain (PBD) is
observed only in the PLK and contains a characteristic se-
quence, which is the trademark of this protein family. This
domain is supposed to be involved in an auto regulatory
mechanism or in targeting the kinase to its substrates [5].
The serine/threonine protein kinases or polo-like kinase 1
(PLK1) exist in centrosome during interphase and is an im-
portant regulatory enzyme in cell cycle progression during M
phase [1, 6]. The polo kinases regulate diverse cellular events
at various stages of M phase [7, 8] such as centrosome
maturation and bipolar spindle formation [9–11]. Polo kinases
also appear to regulate important biochemical steps in G2/M
phase, such as activation of Cdc2 through Cdc25C phospha-
tase [12], DNA damage checkpoint adaptation [13], and reg-
ulation of the anaphase-promoting complex [14, 15]. One
additional function attributed to polo kinases is the induction
of cytokinesis-associated septal structures [10, 16].

Mutations in the polo box domain (PBD) show that the
PBD is critical for localization and mitotic functions of vari-
ous Plks in their native organisms [17–19]. Mutations

Balu Kamaraj and Vidya Rajendran equally contributed to this paper.

B. Kamaraj :V. Rajendran : R. Sethumadhavan : R. Purohit (*)
School of Bio Sciences and Technology (SBST), Bioinformatics
Division, Vellore Institute of Technology University,
Vellore 632014, Tamil Nadu, India
e-mail: riturajpurohit@gmail.com

R. Purohit
Human Genetics Foundation, Torino,
Via Nizza 52, 10126 Torino, Italy

J Mol Model (2013) 19:5587–5599
DOI 10.1007/s00894-013-2044-0



specifically disrupt phosphodependent interactions abolish
cell-cycle-dependent localization and provide compelling
phenotypic evidence that PBD-phospholigand binding is nec-
essary for proper mitotic progression. In addition, phospho-
peptide binding to the PBD stimulates kinase activity in full-
length Plk1, suggesting a conformational switching mecha-
nism for Plk regulation and a dual functionality for the PBD
[20]. Consistent with these observations, a single W414F
mutation is sufficient to disrupt the ability of PBD to bind
with target peptide [5, 21, 22]. Mutations in mammalian
PLK1 was found to be over expressed in various human
cancers including head and neck squamous cell carcinoma,
gastric, thyroid or B-cell lymphomas, oropharyngeal carci-
nomas, non-small cell lung cancer, melanomas, ovarian, and
endometrial carcinomas [23].

Non-synonymous SNPs (nsSNPs) occurring in the coding
regions result in single amino acid polymorphisms (SAPs)
that may affect protein conformation and function which lead
to cause pathogenic phenotypes. nsSNPs have the prospective
to alter the function of their corresponding protein, either
directly or via disruption of structure. Hence they are of
particular concern for further experimental assessment. Com-
putational algorithms were implemented to filter the non-
significant SNPs from the ones that might produce major
disease associated consequences. The phenotypic changes
integrated with classical computational SNP prediction tech-
niques, will ultimately provide a high accuracy prediction
level and thus will help in easy classification of SNPs on the
basis of their specific disease-associated consequences. In-
silico studies have previously provided an efficient platform
for evaluation and analysis of genetic mutations for their
pathological consequence and in determining their underlying

molecular mechanism [24–28]. In this study we analyzed the
deleterious effect of nsSNPs reported in PLK1 protein coding
region. In our study we used Polyphen 2.0 [29], SIFT [30], I-
mutant 3.0 [31], PANTHER [32], PhD-SNP [33], SNP&GO
[34], MutPred [35] and Dr Cancer [36] to prioritize the most
deleterious and disease-associated nsSNPs from the available
SNP datasets obtained from swissprot/Uniprot database. Con-
formational changes in the 3D structure of the protein ac-
counts for its time dependent physiological affinities and
various biochemical pathway alterations [37–42]. Molecular
docking and molecular dynamics simulation (MDS) approach
was applied to examine, how the predicted mutation (W414F)
affect the interaction between Plk1 PBD and their target
peptides which is sufficient to inhibit the over expression of
plk1. The overall workflow implemented in this work was
shown in Fig. 1.

Materials and methodology

Dataset collection

The protein sequence and SNP information for our in-silico
analysis were obtained from swissprot/Uniprot database
[43–45]. The structure of PLK1 (PDB ID: 3FVH_A) and
two peptide molecules (PDB ID: 3FVH_B, 3HIK_B) were
obtained from Brookhaven Protein Data Bank [46]. The mu-
tant (W414F) structure was built by induced point mutation in
the position of 414 of PLK1 protein using SPDB viewer
package [47]. This structure was energetically optimized by
applying the all atom OPLS force field available in
GROMACS package 4.5.3 [48].

Fig. 1 Work flow model
implemented in this study
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Disease associated SNP prediction

The single nucleotide polymorphism occurring in the pro-
tein coding region may lead to the deleterious conse-
quences and might disturb its 3D structure. Here we ap-
plied Polyphen 2.0 [29], SIFT [30], I-Mutant 3.0 [31],
PANTHER [32], PhD-SNP [33], SNP&GO [34], MutPred
[35], and Dr Cancer [36] tools in order to examine the
cancer-associated nsSNP occurring in the PLK1 protein
coding region. PolyPhen 2.0 is based on combination of
sequence and structure based attributes and uses naive
Bayesian classifier for the identification of an amino acid
substitution and the impact of mutation. The output levels
of probably damaging and possibly damaging were classi-
fied as functionally significant (≤0.5) and the benign level
being classified as tolerated (≥0.51) [29]. SIFT prediction is
based on the sequence homology and the physicochemical
properties of amino acids which are dictated by the
substituted amino acid. SIFT score ≥0.05 indicates the
amino acid substitution is intolerant or deleterious, whereas
the score ≤0.05 is predicted as tolerant [30]. I-Mutant 3.0 is
a support vector machine (SVM)-based tool. We used the
sequence based version of I-Mutant 3.0 that classifies the
prediction into three classes: neutral mutation (−0.5 ≤ DDG
≥ 0.5 kcal mol-1), large decrease (<−0.5 kcal mol-1), and a
large increase (>0.5 kcal mol-1). The free energy change
(DDG) predicted by I-Mutant 3.0 is based on the difference
between unfolding Gibbs free energy change of mutant
and native protein (kcal mol-1) [31]. PANTHER program
which is a protein family and subfamily database which
predicts the frequency of occurrence of amino acid at a
particular position in evolutionary related protein se-
quences. The threshold subPSEC score of −3 has been
assigned below which the predictions are considered as
deleterious [32]. We filtered the missense mutations that
were combinedly predicted to be deleterious and damaging
from these four servers. Further we used PhD-SNP,
SNP&GO, MutPred and Dr Cancer tools to examine the
cancer-associated SNPs. PhD-SNP is SVM based classifi-
er, trained over the million amino acid polymorphism
datasets using supervised training algorithm [33]. It pre-
dicts whether the given amino acid substitution leads to
disease associated or neutral along with the reliability
index score [37]. SNP&GO retrieves data from protein
sequence, evolutionary information, and functions as
encoded in the gene ontology terms [34]. MutPred is a
web based tool, used to predict the molecular cause of
disease related amino acid substitution [35]. It utilizes
several attributes related to protein structure, function,
and evolution. Thus by combining the scores of all three
servers, the accuracy of prediction rises to a greater extent.
Further we used Dr Cancer [36] to identify cancer asso-
ciated SNPs from the available dataset.

Cation- π sites and stabilizing residues

Cation-π interactions were computed using CaPTURE pro-
gram [49]. The CaPTURE program identifies energetically
significant cation–π interactions within proteins in the Protein
Data Bank (PDB). Cation–π interactions in protein structures
are identified and evaluated by using an energy-based criteri-
on for selecting significant side chain pairs. The percentage
composition of a specific amino acid residue contributing to
cation–π interactions is obtained from the equation:

compcat−π ið Þ ¼ ncat−π ið Þ � 100=n ið Þ½ �;

where “i” stands for the five residues (Lys, Arg, Phe, Trp, and
Tyr), ncat–π is the number of residues involved in cation–π
interactions, and n (i) is the number of residues of type “i” in
the considered protein structures.

Further the cation-π interaction is increasingly recognized
as an important non-covalent binding interaction relevant to
structural biology. It uses a variant of the optimized potentials
for liquid simulations (OPLS) force field to provide an ener-
getic evaluation of all potential cation-π interactions in a
protein. The electrostatic energy (Ees) is calculated using the
equation:

Eel ¼
X

qiqje2=rij;

where q i and q j are the charges for the atoms i and j ,
respectively, and r ij is the distance between them. The van
der Waals energy is given by:

Evw ¼ 4εij σij12=rij12ð Þ− σij6=rij6ð Þ½ �;

where σij = (σiiσjj)1/2 and εij = (εiiεjj)1/2 ; σ and ε are the
van der Waals radius and well depth, respectively.

If Ees ≤ −2.0 kcal mol-1, the pair is counted as a cation-π
interaction. If Ees > −1.0 kcal mol-1, the structure is rejected. If
−2.0 < Ees ≤ −1.0 kcal mol-1, the structure is retained only if
EvdW ≤ −1.0 kcal mol-1.

Identifying stabilizing residues

Sride tool [50] was used to identify the stabilizing residues in
PLK1 protein. The prediction is done by calculating four
essential criteria that involves surrounding hydrophobicity of
a residue, the long-range order, stabilization center defined by
considering the contact map of a protein and the conservation
scores of residues. Two residues are in contact if there is at
least one pair of heavy atoms with a distance less than the sum
of the van der Waals radii of the two atoms plus 1.0 Å. A
contact is considered long-range if it is between residues that
are separated by at least ten residues in the amino acid
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sequence. Two residues are SC elements if they are involved
in long-range contacts and if at least one supporting residue
can be found in each of the flanking tetra-peptides of these
residues, in such a way that at least seven out of the possible
nine interactions are formed between the two triplets. Com-
bined all these criteria are compiled to report the stabilizing
residues.

Molecular dynamics simulation

Molecular dynamics simulation was performed by using
GROMACS 4.5.3 package [48] running on a single Intel
Core2Duo machine with 3 GB RAM and running Ubuntu
11.10 Linux package. Structure of native and mutant PLK1
protein was used as the starting point for MD simulations.
Systemswere solvated in a cubic box with simple point charge
(SPC) water molecules at 10 Å marginal radius. At physio-
logical pH the structures were found to be positively charged,
thus in order to make the simulation system electrically neu-
tral, we added two chloride ions (Cl-) to the simulation box
using the “genion” tool that accompanies with GROMACS
package. Initially the solvent molecules were relaxed while all
the solute atoms were harmonically restrained to their original
positions with a force constant of 100 kcal mol-1 for 5000
steps. After this, the whole molecular system was subjected to
energy minimization for 5000 iterations by steepest descent
algorithm implementing GROMOS96 43a1 force field.
Berendsen temperature coupling method [51] was used to
regulate the temperature inside the box. Electrostatic interac-
tions were computed using the particle mesh Ewald method
[52]. The ionization states of the residues were set appropriate
to pH 7 with all histidines assumed neutral. The pressure was
maintained at 1 atm with the allowed compressibility range of
4.5e−5 atm. SHAKE algorithm was used to constrain bond
lengths involving hydrogen, permitting a time step of 2 fs. Van
der Waals and coulomb interactions were truncated at 1.0 nm.
The nonbonded pair list was updated every 10 steps and
conformations were stored every 0.5 ps. Position restraint
simulation for 500 ps was implemented to allow solvent
molecules to enter the cavity region of structure. Finally,
systems were subjected to MD simulation for 40 ns. We then
computed the comparative analysis of structural deviations in
native and mutant structure. RMSD, RMSF, SASA, Rg,
DSSP, distance and density plot analysis were carried out by
using g_rms, g_rmsf, g_sas, g_gyrate, do_dssp, g_dist and
g_density tool respectively. Number of distinct hydrogen
bonds formed by specific residues to other amino acids within
the protein during the simulation (NH bond) was calculated
using g_hbond. NH bond determined on the basis of donor–
acceptor distance smaller than 0.35 nm and of donor–hydro-
gen–acceptor. All the graphs were plotted using XMGRACE
[53] program.

Principle component analysis

The calculation of the eigenvectors and eigenvalues, and their
projection along the first two principal components, was car-
ried out using essential dynamics (ED) method according to
protocol [54] within the GROMACS software package. The
principle component analysis or ED is a technique that re-
duces the complexity of the data and extracts the concerted
motion in simulations that are essentially correlated and pre-
sumably meaningful for biological function [54]. In the ED
analysis, a variance/covariance matrix was constructed from
the trajectories after removal of the rotational and translational
movements. A set of eigenvectors and eigenvalues was iden-
tified by diagonalizing the matrix. The eigenvalues represents
the amplitude of the eigenvector along the multidimensional
space, and the displacement of atoms along each eigenvector
shows the concerted motions of protein along each direction.
The movements of structures in the essential subspace were
identified by projecting the Cartesian trajectory coordinates
along the most important eigenvectors from the analysis.
Backbone C-alpha bonds trajectories were obtained using
g_covar and g_anaeig of GROMACS utilities.

Molecular docking approach

To validate MDS results, we used PatchDock for docking
native and mutants of PLK1 with two target peptides. In our
paper we called, Acetyl-Leu-His-Ser-phosphoThr-Ala-NH2
peptide (PDB ID: 3FVH_B) as peptide 1 and pentamer
phosphopeptide (PDB ID: 3HIK_B) as peptide 2.
PatchDock performs docking based on molecular shape
representation, surface patch matching plus filtering and
scoring [55, 56]. PatchDock is more reliable because of its
fast transformational search, which is driven by local feature
matching rather than brute force searching of the six dimen-
sional transformation space. It further speeds up the compu-
tational processing time by utilizing advanced data structures
and spatial pattern detection techniques, such as geometric
hashing and pose clustering. Protein and the peptide mole-
cule were given as input for performing the docking exper-
iments with default root-mean-square deviation (RMSD)
value (4.00 Å). Binding site residues 416D, 489H, 491L,
516R, 538H, and 540K of PLK1 were given as one of the
additional inputs to the server. It generated several complex
structures based on docking scores. The complex structure
file, with the best docking score was selected for further
analysis. The global binding energy of the PLK1-peptide
complex was calculated by FireDock web server [57, 58].
FireDock is an efficient method for refinement and re-
scoring of rigid-body protein-protein docking solutions.
The higher negative value of total interaction energy enables
better interaction and vice-versa.
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Results and discussion

Prediction of deleterious and cancer-associated nsSNPs

Out of 24 input missense SNP dataset, 18 nsSNPs were found
to be “damaging” (0.5 to 1.000) to protein structure and
function and the remaining six nsSNPs were characterized
as benign by Polyphen 2.0. Among these 18 deleterious
nsSNPs, eight SNPs L130G, S137A, D176N, D194A,
T210A, T210D, T210V, and W414F were report to be highly
deleterious with Polyphen score of 1.000 (Table 1). In SIFT,
18 mutations were predicted to be deleterious with tolerance
index ≥ 0.05 (Table 1). Among these 18 mutations, 15 SNPs
R12L, R518H, S595L, C67V, K82M, L130G, S137A,
S137D, D176N, D194A, T210A, T210D, T210V, R337A,
W414F, and H538A were reported to be highly deleterious
with SIFT score of 0.00 (Table 1). Furthermore, 17 mutations
were identified as deleterious and damaging in SIFT and
Polyphen2.0 server (Table 1) which also shows a strong
correlation between the prediction methodologies implement-
ed by these two servers. All the nsSNPs submitted to
Polyphen 2.0 and SIFT were also submitted as input to the I-

Mutant 3.0 server. Nineteen mutations were predicted to affect
the stability of the protein structure by I-Mutant 3.0. To further
validate these results we implemented a HMM based statisti-
cal prediction method to identify the functionally significant
point mutations using PANTHER server. The mutations with
subPSEC score less than −3 has been reported to be probably
deleterious. Eleven mutations with subPSEC score less than
equal to −3 were characterized to be deleterious. We filtered
nine mutations (R518H, L130G, S137A, D176N, D194A,
T210A, T210D, T210V, and W414F) which were commonly
predicted to be deleterious and damaging by Polyphen2.0,
SIFT, I-Mutant 3.0 and PANTHER servers (Table 1). Further
we applied PhD-SNP, SNP&GO,MutPred, Dr Cancer tools to
observe the cancer-associated mutation on PLK1 protein. Out
of nine mutations, six of them (R518H, D194A, T210A,
T210D, T210V, and W414F) were predicted to be disease
associated in PhD-SNP server (Table 2). In SNP&GO, eight
nsSNPs (R518H, L130G, D176N, D194A, T210A, T210D,
T210V, and W414F) were predicted to be disease associated
(Table 2). To verify this prediction we further employed
Mutpred and Dr Cancer tools. We found W414F to be highly
cancer-associated with general probability (g) scores of 0.813

Table 1 Deleterious and damag-
ing nsSNPs prioritized by four
computational methods PolyPhen
2.0, SIFT, I-mutant 3.0, and
PANTHER in PLK-1 gene

SNPs highlighted in bold are pre-
dicted to be deleterious

Mutation PolyPhen 2.0 SIFT I-MUTANT 3.0 PANTHER

PSIC Prediction Score Prediction DDG Stability subPSEC Prediction

R12L 0.054 Benign 0.00 Deleterious 0.13 Increase NA NA

L261F 0.084 Benign 0.14 Tolerated −0.95 Decrease −3.20686 Deleterious

N297D 0.000 Benign 0.64 Tolerated −0.41 Decrease −2.65669 Tolerated

L332V 0.001 Benign 0.57 Tolerated −1.50 Decrease −2.50672 Tolerated

I463H 0.001 Benign 0.50 Tolerated −2.27 Decrease NA NA

R518H 0.967 Damaging 0.02 Deleterious −1.50 Decrease −3.04726 Deleterious

S595L 0.933 Damaging 0.08 Tolerated 0.16 Increase NA NA

R599H 0.001 Benign 0.18 Tolerated −1.24 Decrease NA NA

C67V 0.961 Damaging 0.00 Deleterious −0.05 Decrease NA NA

K82M 0.999 Damaging 0.00 Deleterious 0.14 Increase NA NA

L130G 1.000 Damaging 0.00 Deleterious −3.17 Decrease −6.73879 Deleterious

S137A 1.000 Damaging 0.00 Deleterious −0.56 Decrease −3.90559 Deleterious

S137D 1.000 Damaging 0.00 Deleterious 0.17 Increase −5.55171 Deleterious

D176N 1.000 Damaging 0.00 Deleterious −1.14 Decrease −5.67212 Deleterious

D194A 1.000 Damaging 0.00 Deleterious −0.64 Decrease −5.98769 Deleterious

T210A 0.962 Damaging 0.00 Deleterious −1.39 Decrease −4.88553 Deleterious

T210D 0.992 Damaging 0.00 Deleterious −0.99 Decrease −6.2594 Deleterious

T210V 1.000 Damaging 0.00 Deleterious −0.78 Decrease −5.77384 Deleterious

R337A 0.901 Damaging 0.00 Deleterious −1.10 Decrease −1.91497 Tolerated

L340A 0.768 Damaging 0.01 Deleterious −2.97 Decrease −1.93366 Tolerated

W414F 1.000 Damaging 0.00 Deleterious −1.26 Decrease −4.07587 Deleterious

K492R 0.999 Damaging 0.03 Deleterious −0.28 Decrease −2.74906 Tolerated

H538A 0.997 Damaging 0.00 Deleterious −0.35 Decrease −2.19467 Tolerated

K540M 1.000 Damaging 0.00 Deleterious 0.29 Increase NA NA
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andwere predicted to induce the loss of stability with (p) score of
0.0349, showing confident hypothesis (Table 2). This prediction
could be endorsed with the observed experimental data [21].

Structural and functional analysis of PLK1 protein
upon mutation

To understand the structural and functional behavior of the
prioritized cancer associated mutations, we performed molec-
ular dynamics simulation for native and mutant PLK1 pro-
teins. We studied RMSD, RMSF, Rg, SASA, NH bond

variations, density plot and ED analysis between the native
and mutant (W414F) PLK1 proteins. RMSD for all the Cα
atoms were calculated from the initial structure which was
considered as the central origin to measure the protein system
(Fig. 2a). In Fig. 2a, native and mutant (W414F) showed a
similar way of deviation till 13,640 ps from their initial struc-
ture resulting in the backbone RMSD of ∼0.09 to ∼0.23 nm
during simulation. After, native structure showed minimum
deviation till the end of simulation resulting in the backbone
RMSD of ∼0.14 to ∼0.22 nm, where as mutant structure
showed maximum deviation till the end of simulation

Table 2 The disease associated nsSNPs are predicted from PhD-SNP, SNP&GO, Mutpred, and Dr Cancer servers

Mutation PhD-SNP SNP&GO Mutpred Dr Cancer Inference

g score P score Molecular changes

R518H Disease Disease 0.575 0.0181 Loos of sheet Neutral Actionable hypothesis

L130G Neutral Disease 0.683 0.0603 Loss of loop Cancer No reliable inference

S137A Neutral Neutral 0.546 0.0062 Loss of phosphorylation at S137 Neutral Actionable hypothesis

D176N Neutral Disease 0.933 0.0381 Loss of catalytic residue at D176 Cancer Confident hypothesis

D194A Disease Disease 0.932 0.0535 Gain of methylation at K191 Cancer No reliable Inference

T210A Disease Disease 0.837 0.028 Loss of phosphorylation at T210 Cancer Actionable hypothesis

T210D Disease Disease 0.811 0.028 Loss of phosphorylation at T210 Cancer Actionable hypothesis

T210V Disease Disease 0.842 0.028 Loss of phosphorylation at T210 Cancer Actionable hypothesis

W414F Disease Disease 0.813 0.0349 Loss of stability Cancer Confident hypothesis

Mutations highlighted in bold has been predicted to show pathogenic property

Fig. 2 a-e RMSD, RMSF, Rg,
SASA, and NH bond of native
and mutant PLK1 proteins versus
time at 300 K. Native is shown in
black, mutant (W414F) in red
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resulting backbone RMSD of ∼0.24 to ∼0.29 nm respectively.
This magnitude of fluctuation together with a small difference
in average RMSD value after the relaxation period led to the
conclusion that the simulation produced stable trajectory, thus
providing a suitable basis for further analysis. With the aim of
determining whether mutation affected the dynamic behavior

of residues, the RMSF values of native and mutant (W414F)
structures were calculated (Fig. 2b). Higher degree of flexi-
bility was observed inmutant when compared to native PLK1.
It further indicates that mutant conformation was flexible
throughout the simulation time and its structure acquired
expanded conformation as compared to native.

Fig. 3 Number density plot of PLK-1 protein. a . Native, b . Mutant

Fig. 4 Projection of the motion
of the protein in phase space
along the first two principal
eigenvectors at 300 K: (a) Native
is shown in black, mutant in red.
For clarity’s sake, each trajectory
is also shown separately in b , c
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The radius of gyration (Rg) is defined as the mass-weight
root mean square distance of collection of atoms from their
common center of mass. It provides an insight into the overall
dimension of the protein. Radius of gyration plot for Cα
atoms of protein vs. time at 300 K is shown in Fig. 2c. In
Fig. 2c, at the end of the simulation mutant structure showed
greater Rg value than native structure. The change of SASA
for native and mutant (W414F) proteins with time is shown in
Fig. 2d. Mutant (W414F) structure indicated higher value of
SASA with time, while native showed lower SASA value.
Maximum fluctuation in Rg plot indicated that the mutant
protein might be undergoing a significant structural transition.
This was further supported by SASA result in which the

mutant was found to exhibit higher values of SASA as com-
pared to the native (Fig. 2d). Hydrogen bond accounts for the
major factor of maintaining the stable conformation of protein.
NHbond analyses of native and mutant (W414F) proteins
were performed with respect to time in order to understand
the relationship between flexibility and hydrogen bond for-
mation. Mutant structure showed a significantly smaller num-
ber of NHbond formation during the simulation as compared
to native (Fig. 2e).

NHbond results of native and mutant proteins are in accor-
dance to the RMSD, RMSF, Rg, and SASA plot results. And
further it was indicated that mutant (W414F) structure became
more flexible upon mutation which affects the structural and

Fig. 5 Snapshots of native and
mutant (W414F) PLK-1 protein
conformation merged at different
simulation timescale. Native is
shown in blue, mutant in red

Fig. 6 Time evolution of the
secondary structural elements of
PLK-1 proteins at 300 K (DSSP
classification). a . Native, b .
Mutant
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functional behavior of PLK1 protein. This was further sup-
ported by the atomic density plot and PCA analysis. The
consequences of these molecular changes were clearly ob-
served in the atomic density distribution plot. Moreover the
mutant structure shows highest atomic density distribution of
39.3 nm−3 but in native structure showed 70 nm−3 respectively
(Fig. 3). The spectrum of the corresponding eigenvalues indi-
cated the level of fluctuation and dynamic behavior of protein
molecule in the system and was basically confined within the
first two eigenvectors. Native structure showed a small region
of phase space particularly along PC1 plane not in the mutant
structure (Fig. 4). We obtained the following values for native
and mutant (W414F) structures are 109.05 nm2 and
124.95 nm2 respectively and again it confirmed the overall
increased flexibility in mutant (W414) than in native structure
at 300 K.

To examine how the structure got disturbed and affected
the functions upon mutation, we analyzed the super imposed
initial and final structure of native and mutant PLK1 protein at
different time scales. It was clearly observed that there is an
increase in loop content in mutant structure as compared to
native structure till the end of simulation (Fig. 5). It was well
supported by the DSSP analysis. The structural flexibility was

observed by the analysis of time dependent secondary struc-
ture fluctuations. Figure 6 showed helix, coil, bends, sheets
and turns in both native and mutant PLK1 protein during
simulation period. Mutant (W414F) structure showed an in-
crease in loop and turns content in the amino acid residual
position from 15 to 30, 120 to 140, and 185 to 190 as
compared to native structure. Moreover the native structure
showed more helical content from the amino acid residual
position from 195 to 200 when compared to mutant (W414F)
structure. In general helices are mostly rigid whereas spanning
loop regions are mostly flexible [59–61]. Here, native struc-
ture showed continuous loss of coils and turns than mutant
structure till the end of simulation. It confirmed that due to
mutation the structure became more flexible in the
conformation.

The above results strongly showed stability loss in the
mutant (W414F) structure. To examine the reason behind such
phenotype, we further investigated the cation- π interactions
and the stabilizing residues in PLK1 protein. Cation–π inter-
actions were known to be important contributors to protein

Table 3 Cation-π interactions obtained from CaPTURE program

Cation Pi E(es) (kcal mol-1) E(vdw) (kcal mol-1)

Arg579 Phe534 −1.41 −1.56
Lys475 Phe436 −2.09 −0.88

Fig. 7 Distance fluctuation
between the cation-π residues (a)
Arg579-Phe534 (b) Lys475-
Phe436. Native is shown in black
and mutant in red

Table 4 The RMSF
values of residues acting
as stabilizing center in
PLK-1 protein

Residues RMSF(nm)

Native Mutant

Pro407 0.0530 0.1452

Val411 0.0449 0.1233

Ser412 0.0514 0.1171

Gly571 0.0726 0.1236
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stability. The importance of cation–π interaction has been
examined in several research works for their corresponding
role in maintaining the stability of proteins. We observed a
total of two energetically significant cation–π interactions
(Table 3). To examine if the cation–π interactions were
retained in mutant structure, we further investigated the bond
distance fluctuations for the distant cation–π interaction
(Fig. 7a–b). The bond distance fluctuation showed that the
Arg579-Phe534 and Lys475-phe436 cation–π interactions
have undergone major interaction losses (Fig. 7a–b). Mutant
trajectory of Arg579-Phe534&Lys475-Phe436 bond distance
was comparatively higher than native structure. These results
indicate that there was a major loss in cation–π interactions in
the mutant (W414F) structure which might have induced
higher fluctuation and lower stability of the structure. Further-
more, the protein structure contains certain stabilizing centers
(SC) that act as an essential component to maintain the stable
conformation of corresponding protein. Residues Pro407,
Val411, Ser412, and Gly571 were identified as stabilizing
centers. When the RMSF of these residues were investigated,
we observed a significant rise in their fluctuation levels
(Table 4). Apart from cation-π interactions, the mutation has
also introduced major deflection in the PLK1 protein stabiliz-
ing centers, which might have significantly contributed to-
ward phenotypic changes observed in mutant W414F
structure.

Protein-peptide interaction analysis

From the molecular dynamics approach we examined that,
due to mutation PLK1 protein lost stability and became more

flexible. And this flexibile conformation can alter the binding
phenomenon of protein with ligand molecule. To validate this,
further we applied molecular docking approach to evaluate the
interaction between the initial (0 ns) and end (40 ns) structure
of PLK1 protein with two target peptides upon mutation. In
our paper we called native PLK1-peptide 1 complex as com-
plex I, mutant PLK1-peptide 1 complex as complex II, native
PLK1-peptide 2 complex as complex III and mutant PLK1-
peptide 2 complex as complex IV at 0 ns and 40 ns
respectively.

In-depth analysis of the docked complex reveals notable
features. Calculation of binding energy is very important to
understand the affinity level of biological partners. Overall
binding energy of the complex mainly contributes to attractive
and repulsive van derWaals interaction energy, atomic contact
energy (ACE), hydrogen bond (HB) and area (interfacial
surface area of the complex) between PLK1 (native and
mutant) and peptide 1 and peptide 2.

Using initial structure of the PLK1 protein, complexes I
and II showed binding energy of −44.8 kcal mol-1 and
−40.47 kcal mol-1, respectively. Complex III showed binding
energy of −44.26 kcal mol-1 and complex IVexhibited binding
energy of −41.94 kcal mol-1, respectively (Table 5). Less
interaction has been found in complexes II and IV when
compared to complexes I and III and this was due to more
interfacial surface area and less contribution of hydrogen bond
and this is depicted in Table 5. In a similar manner using end
structure of the PLK1 protein, complexes II and IV showed
less interaction than complexes I and III, respectively
(Table 6). At both stages (0 ns and 40 ns), a more negative
value of binding energy was observed in complex I and

Table 5 Docking analysis of ini-
tial structure (0 ns) of native and
mutant PLK1 protein with peptide
1 and peptide 2

vdW van der Waals energy;
ACE Atomic contact energy;
HB Hydrogen bonds

Parameters Complex I Complex II Complex III Complex IV

Binding energy (kcal mol-1) −44.88 −40.47 −44.26 −41.94
Attractive vdW −19.84 −14.85 −22.23 −17.89
Repulsive vdW 4.45 3.39 13.99 6.66

ACE −6.35 −8.94 −7.83 −9.43
HB −1.99 −1.59 −1.57 −0.89
Area 587.1 629.3 731.3 837.3

Table 6 Docking analysis of end
structure (40 ns) of native and
mutant PLK1 protein with peptide
1 and peptide 2

vdW van der Waals energy;
ACE Atomic contact energy;
HB Hydrogen bonds

Parameters Complex I Complex II Complex III Complex IV

Binding energy (kcal mol-1) −56.64 −39.89 −55.18 −46.31
Attractive vdW −23.11 −20.75 −23.49 −22.42
Repulsive vdW 16.86 6.18 7.83 6.28

ACE −7.82 −10.74 −7.74 −13.04
HB −1.18 −2.49 −4.15 −0.71
Area 661.9 679.2 690.9 726
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complex III which indicates high binding affinity toward their
biological partners (peptide 1 and 2) when compared to com-
plex II and IV. Major differences between binding energy, ACE
and area were observed in all the complexes (Tables 5 and 6).

The binding energy of complex II and IV is significantly
higher than complex I and complex III respectively (Tables 5
and 6). This clearly indicates that the effect of mutation in
PLK1 loss and the interaction with peptides. And this was
well supported by alteration in binding residues of PLK1
protein upon mutation. Superimposed conformers of binding
residues of native and mutant (W414F) PLK1 protein at
different time scales during simulation were shown in Fig. 8.
The significant conformational changes in binding residues
are clearly shown. In mutant (W414F) PLK1, the binding
residues of 416D, 489H, 491L, 516R, 538H, and 540K ex-
hibited more flexibility than native. Due to flexible conforma-
tion the mutant PLK1 residues have less participation in H-
bonding with other amino acids, while native PLK1 residues
were rigid and have more H-bonds.

MD simulation analysis has collectively suggested that the
W414F mutation has strong evidence of inducing phenotypic
damages in PLK1. And this damage can alter the binding
phenomenon between protein and ligand molecule. In
docking analysis we clearly observed that, mutation in
PLK1 protein might disturb the interaction with two target
peptides which is sufficient to inhibit the over expression of
PLK1 protein. These results can be further implemented for

drug designing process and develop a potent drug target for
PLK1 associated diseases.

Conclusions

In-silico analysis has now become a significant way to char-
acterize a standard disease specific SNP at atomic level. Using
multiple computational methods and molecular dynamics
simulation approaches, we identified the PLK1 W414F mu-
tation as highly deleterious as well as their molecular mecha-
nisms. The stability loss is clearly observed in RMSD, RMSF,
Rg, and SASA analysis in mutant (W414F) structure. Due to
mutation, PLK1 protein became more flexible in nature,
which is well supported by NHbond, density plot, PCA, and
DSSP analysis. This might disturb the structural orientation
and binding phenomenon of the PLK1 protein. From the
docking approach we clearly observed that, mutation in
PLK1 protein might disturb the interaction with target peptide
which is sufficient to inhibit the over expression of PLK1
protein. Our analysis suggests an important roadmap to iden-
tify the cancer associated mutation and its molecular mecha-
nism of native and mutant PLK1 protein. The insight of
mutation (W414F) in PLK1 protein significantly helps re-
searchers to develop drug therapies for PLK1 cancer-
associated diseases.

Fig. 8 Movements of PLK1 binding residues (416D, 489H, 491L, 516R, 538H, and 540K) of native and mutant protein during simulations. Average
structure of PLK1 binding residues at 0 ns (green), 10 ns (cyan), 20 ns (magenta), 30 ns (purple), and 40 ns (red) has been superimposed
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